Dynamic Control of Inositol 1,4,5-Trisphosphate-Induced Ca²⁺ Release: A Theoretical Explanation for the Quantal Release of Ca²⁺

STÉPHANE SWILLENS

Institut de Recherche Interdisciplinaire, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium Received June 17, 1991; Accepted October 2, 1991

SUMMARY

A theoretical model has been elaborated in order to describe the kinetics of Ca²⁺ release induced by inositol 1,4,5-trisphosphate (IP₃). The model is based on the existence of a key molecule that controls the interconversion of open and closed forms of the Ca²⁺ channel. The model can quantitatively explain the

previously obtained experimental observations that showed that a continuous IP_3 stimulus leads to a biphasic Ca^{2+} release and that successive IP_3 additions provoke repetitive bursts of Ca^{2+} release. Other published interpretations of these observations are discussed.

IP₃ propagates a specific hormone stimulus by mobilizing Ca²⁺ essentially from intracellular stores (see Ref. 1 for review). The membrane of these IP₃-sensitive vesicles contains Ca²⁺ channels composed of four identical monomers that specifically bind IP₃ (2). The IP₃-induced opening of the channel allows the passive transport of Ca2+ across the membrane of the vesicle. An ATP-driven Ca²⁺ pump ensures the refilling of the store. In the absence of ATP, the rate of Ca2+ efflux depends at least on the IP3 concentration and on the gradient of free Ca²⁺ concentration across the membrane. Although a monoexponential decay curve of intravesicular Ca²⁺ is observed in the presence of the Ca²⁺ ionophore ionomycin, IP₃-induced Ca²⁺ release exhibits biphasic kinetics (3, 4); a short phase of fast Ca²⁺ release is followed by a prolonged phase of slow efflux, which is mainly accounted for by an IP3-independent leak across the membrane. Moreover, the amount of Ca2+ released during the first phase, which thus represents the apparent size of the IP₃-sensitive Ca²⁺ store, depends on IP₃ concentration (3, 4). The term "quantal Ca²⁺ release" has been proposed (3) to describe the experimental fact that a submaximal IP₃ concentration mobilizes only a fraction of the stored Ca2+. According to these observations, another study (5) showed that, when the ATP-driven Ca2+ pump is active, successive additions of IP₃ provoke short pulses of Ca²⁺ release, leading to the concept of "increment detection."

Biphasic IP₃-induced Ca²⁺ release observed in the absence of ATP may be explained by a transient activation of the Ca²⁺

channel, which could be due to a time-dependent decrease of IP₃ concentration or to desensitization of the IP₃ receptor. However, experimental observations do not support these interpretations (3–5). Two other explanations, based on the elaboration of equilibrium models, have been proposed and suggest either the existence of a heterogeneous population of Ca²⁺ stores with different sensitivities to IP₃ (3, 4) or the regulation of Ca²⁺ release by intravesicular Ca²⁺ (6). Our study shows that the latter explanation cannot account for the successive bursts of Ca²⁺ release induced by repetitive additions of IP₃ and that the model supporting the former explanation is unlikely because of its high degree of complexity.

The aim of this paper is to propose a model, devoid of unnecessary complexity, that can simulate the kinetic experimental observations on the IP₃-induced quantal Ca²⁺ release. This model involves a fast catalytic interconversion of open and closed forms of the Ca²⁺ channel. The net interconversion rate is controlled by a molecule that, as a sensor of the channel activity, should be able to remember that the Ca²⁺ efflux has been recently stimulated. For this purpose, it is assumed that the activation of this molecule resulting from the opening of Ca²⁺ channels is a slow catalytic process. Thus, the key feature of this model is the dynamic control of the number of open Ca²⁺ channels by cross-coupled catalytic processes. It is demonstrated by numerical simulations that the model is quantitatively compatible with the published evoked data.

Rationale

The model is based on the postulate that the transient IP_3 -induced Ca^{2+} efflux is due to a conformational change of the IP_3 receptor- Ca^{2+}

ABBREVIATIONS: IP₃, p-myo-inositol 1,4,5-trisphosphate; ISP₃, pL-inositol 1,4,5-trisphosphorothioate; GTP γ S, guanosine-5'-O-(3-thio)triphosphate; GDP β S, guanosine-5'-O-(2-thio)diphosphate.

This work was performed under a contract with the Ministère de la Politique Scientifique (Sciences de la Vie, BIO/04).

channel molecule. This molecule may thus exist in two interconvertible forms, termed A and B. The IP3-bound forms are denoted A1 and B1, respectively. The A_I form represents the open Ca²⁺ channel, whereas the B_I form is inactive despite the presence of IP₃. The biphasic kinetics of IP₃-induced Ca²⁺ release could result from a fast activation of the channel due the binding of IP₃ to the A form, followed by a slow conversion of the active A_I form to the inactive B_I form, leading to channel desensitization. This conversion should be reversible, in order to allow the resensitization of the system. However, the interconversion reaction must favor the accumulation of the B_I form at the expense of the A_I form, because the experimental observations have shown that the IP₃-dependent Ca²⁺ efflux virtually vanishes in the second phase of the Ca2+ release (3, 4). Therefore, the conversion B1 to A1 must be much slower than the conversion of A_I to B_I and, thus, active channel molecules cannot be rapidly mobilized because the resensitization process is slower than the desensitization process. Thus, as suggested by others (3-5), the classic concept of desensitization does not apply to the IP₂ receptor-Ca²⁺ channel system, because it cannot explain the experimentally observed succession of Ca2+ bursts induced by repetitive submaximal additions of IP₃ (5). As a consequence, one has to conclude that the interconversion rates are fast, despite the fact that the accumulation of the B₁ form is slow. In order to fulfill these requirements. dynamic control of the interconversion rates is introduced in the model. This control is provided by a system that slowly increases its activity as long as the channel is in the active form A_I and that regulates the balance of the channel interconversion rates in order to favor the accumulation of the closed channel form.

The simplest description of such a system is given in Fig. 1. The model assumes the existence of a "memory" molecule M, which is slowly converted by the open channel A_I to an active form, M*. This form, M^* , is capable of stimulating the rate, v_b , of B_1 formation. Thus, this memory molecule is operative when it remembers that the channel has been recently activated. More explicitly, the Ca²⁺ flux across the vesicle membrane increases due to the fast accumulation of the A_I channel form induced by IP₂. At the same time, the active A₁ form catalytically converts M to M*. M* slowly accumulates and accelerates the conversion of A_I to B_I, leading to the decrease of Ca²⁺ efflux. In response to the addition of a submaximal IP₃ concentration, the system reaches a steady state characterized by a low A_I concentration and, thus, by a low M* concentration. A further addition of IP3 displaces the binding equilibrium in favor of B₁. Because the B₁ concentration increases, the rate (v_a) of A_I formation may overwhelm the rate (v_b) of B_I formation and, thus, the excess B_I molecules are converted to the

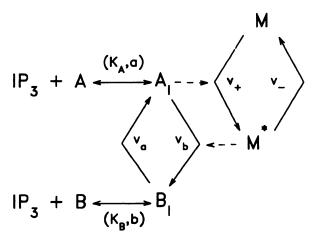


Fig. 1. Description of the dynamic control of IP_3 -induced Ca^{2+} release by the memory molecule M. The binding of IP_3 to both forms A and B of the receptor obeys a Hill model characterized by a dissociation constant $(K_A$ and $K_B)$ and a Hill coefficient (a and b). The conversion of the active channel A_i to the closed form B_i is accelerated by the active form M^* of the memory molecule. This molecule is activated by the active A_i form of the channel.

active A_I form, allowing an increase of Ca²⁺ efflux. More active M* molecules are then slowly produced, leading to a further delayed inactivation of the Ca²⁺ channel.

This description of the behavior of the proposed system requires a theoretical demonstration showing that the experimental kinetic observations can be explained by the model. For that purpose, numerical simulations must be performed on the basis of the mathematical equations associated with the reaction scheme.

It is assumed that the binding of IP₃ to both forms of the receptor is always at equilibrium and is described by the Hill equation:

$$A_{l} = \frac{A_{tot}}{r_{a}} \tag{1}$$

$$B_{I} = \frac{B_{tot}}{r_{b}} \tag{2}$$

with

$$r_a = 1 + (K_A/[IP_3])^a$$
 (3)

$$r_b = 1 + (K_B/[IP_3])^b$$
 (4)

 A_{tot} is the total concentration of the channel in the A form; K_A and a are the equilibrium dissociation constant and the Hill coefficient of IP_3 binding to A, respectively. Equivalent notation is used for IP_3 binding to the B form (eqs. 2 and 4). The total concentration of the IP_3 -sensitive channel is given by

$$Ch_{tot} = A_{tot} + B_{tot}$$
 (5)

Because the interconversion rates v_a and v_b are fast, it is assumed that the steady state is instantaneously attained, i.e., $v_a = v_b$ at any time. For the sake of simplicity, it is assumed that the formation of A_I is a first-order process

$$v_a = k_a B_1 \tag{6}$$

Downloaded from molpharm.aspetjournals.org at Universidade do Estado do Rio de Janeiro on December 4, 2012

The rate of B_1 formation, which is controlled by M^* , obeys michaelian kinetics, characterized by the turnover number k_1 and the Michaelis constant K_M :

$$v_b = \frac{k_t \mathbf{M}^* \mathbf{A_I}}{K_M + \mathbf{A_I}} \tag{7}$$

On the basis of these equations, the concentration of $A_{\rm I}$ at any time can be computed by

$$A_{i}(t) = \frac{1}{2r_{o}} \left[-s + (s^{2} + 4r_{o}K_{M}Ch_{tot})^{N} \right]$$
 (8)

with

$$s = r_o K_M - Ch_{tot} + \frac{r_b k_i M^*(t)}{h}$$
(9)

The variation of M* concentration with respect to time is given by

$$\frac{d\mathbf{M}^*}{dt} = v_+ - v_- \tag{10}$$

where v_+ and v_- are the rates of formation of active and inactive forms of the memory molecule, respectively. It is assumed that the inactivation of the molecule is a first-order process and that the concentration of the active form is always much lower than the total concentration of the memory molecule. Therefore,

$$v_{-} = k_{-}M^{*} \tag{11}$$

$$v_+ = k_+ A_I \tag{12}$$

Considering an initial concentration of M^* , the numerical integration of eq. 10 gives $M^*(t)$ and thus $A_1(t)$, by using eqs. 8 and 9.

The kinetics of variation of the intravesicular Ca²⁺ concentration Ca_{in}(t) are described by the differential equation that involves the

ATP-driven Ca^{2+} pump, the IP₃-stimulated Ca^{2+} efflux, and the Ca^{2+} leak. Assuming that the pump is a michaelian process characterized by the maximal velocity V_p and by the Michaelis constant K_p , one obtains

$$\frac{d\mathrm{Ca_{in}}}{dt} = \frac{V_{\rho}\mathrm{Ca_{ex}}}{K_{\rho} + \mathrm{Ca_{ex}}} - (k_{c}\mathrm{A}_{I}(t) + k_{1})\mathrm{Ca_{in}}$$
(13)

where k_c and k_1 are the second-order constant of the IP₃-sensitive Ca²⁺ efflux and the first-order constant of the leak, respectively. Assuming that the total concentration of Ca²⁺ is constant and equal to Ca_{tot}, the cytosolic concentration Ca_{ex} can be replaced by Ca_{tot} – Ca_{in}. The numerical integration of eq. 13 gives Ca_{in}(t) and thus Ca_{ex}(t).

All numerical integrations are based on the fourth-order Runge-Kutta method.

Results and Discussion

The demonstration that the kinetic concepts involved in the proposed model may explain IP₃-induced quantal Ca²⁺ release requires that the experimentally observed data can be generated by the model. For that purpose, several kinetic experiments were considered, in particular, those of Taylor and Potter (4) describing the efflux of Ca2+ from permeabilized hepatocytes. These authors presented several decay curves for intravesicular Ca²⁺ content obtained with different concentrations of ISP₃, in the absence of ATP in order to avoid the refilling of the Ca²⁺ store (Fig. 2 of Ref. 4). Fig. 2 shows the results of the simulation. As expected, the model is able to generate biphasic kinetics of Ca2+ release. The amount of Ca2+ released during the first phase, i.e., the apparent size of the Ca2+ pool, is dependent on the concentration of ISP₃. Indeed, a higher ISP₃ concentration leads to a higher initial A_I concentration and, thus, to a higher initial Ca²⁺ efflux. It was also shown in the same experimental study (Fig. 4 of Ref. 4) that a further addition of ISP3 in the second phase of the Ca2+ release previously induced by a submaximal ISP₃ concentration provokes a new fast Ca²⁺ efflux. This observation suggested that the quantal release is not due to IP₃ receptor desensitization. As expected, simulation

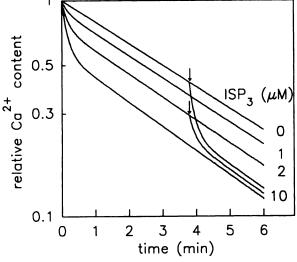


Fig. 2. Numerical simulation of Ca^{2+} efflux stimulated by ISP₃. ISP₃ (different concentrations from 0 to 10 μ M, as indicated) is added at zero time. After 3.83 min (*arrows*), a further ISP₃ addition brings the final concentration to 10 μ M. The parameters were chosen in order to generate decay curves compatible with experimental data obtained by Taylor and Potter (Figs. 2 and 4 of Ref. 4): $K_A = K_B = 2 \mu$ M; a = b = 2; $k_1/k_a = 10,000$; $K_M/Ch_{tot} = 10^{-7}$; $k_+ = 0.0005 \, \text{min}^{-1}$; $k_- = 0.05 \, \text{min}^{-1}$; $k_c Ch_{tot} = 3 \, \text{min}^{-1}$; $k_1 = 0.23 \, \text{min}^{-1}$; $V_p = 0$ (no Ca^{2+} reuptake).

showed that the model can quantitatively explain these data (Fig. 2). It has to be noted that the slope of the decay curve in the semilogarithmic representation does not significantly depend on the Ca^{2+} content of the store. Indeed, the addition of $10~\mu M$ ISP₃ at zero time or after 3.83 min leads to the same initial slope of the curve, although the Ca^{2+} contents at the beginning of the two stimulations are different because of the leak. Again, this theoretical result is compatible with the experimental observation (Figs. 2 and 4 of Ref. 4).

Biphasic IP₃-induced Ca²⁺ release was also observed in permeabilized RBL cells at 37° (5). As shown in Fig. 3, the model can simulate the reported experimental data obtained in the absence of Ca²⁺ reuptake by the store (Fig. 3 of Ref. 5). Using the same parameter values, the model can simulate the response of the IP₃-sensitive Ca²⁺ store to sequential additions of IP₃ when the ATP-driven pump is active. The theoretical curves shown in Fig. 4 correspond to different sequences of IP₃ additions and present successive bursts of Ca²⁺ release reminiscent of those observed in the experimental study (Fig. 5 of Ref. 5).

The interpretation of the evoked observations has led to other possible explanations. It was suggested (3) that the quantal Ca2+ release could be due to the existence of a heterogeneous population of IP₃-sensitive stores exhibiting different sensitivities to IP₃. Thus, at a given submaximal IP₃ concentration, the more sensitive stores may release their Ca2+ content, whereas the less sensitive stores cannot respond to the IP3 stimulus. Because the IP3-induced Ca2+ efflux observed in the second phase is not different from the basal Ca²⁺ efflux, it must be concluded that the stores respond in a strict all-or-nothing manner. This kind of behavior requires a highly sophisticated regulatory mechanism. Even a high degree of cooperativity associated with the binding of IP3 would not be sufficient to meet this requirement. Moreover, the distribution of the sensitivity to IP₃ and of the Ca²⁺ content of the different stores should be under fine-tuned control of an undefined cellular mechanism, in order to account for the observed continuous

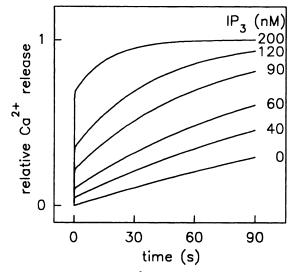


Fig. 3. Numerical simulation of Ca²⁺ efflux stimulated by IP₃. IP₃ (different concentrations from 0 to 200 nm, as indicated) is added at zero time. The parameters were chosen in order to generate Ca²⁺ release curves compatible with experimental data obtained by Meyer and Stryer (Fig. 3 of Ref. 5): $K_A = K_B = 1$ μ m; a = b = 2; $k_1/k_B = 20,000$; $K_M/Ch_{tot} = 10^{-7}$; $k_+ = 0.0005$ sec⁻¹; $k_- = 0.05$ sec⁻¹; k_c Ch_{tot} = 300 sec⁻¹; $k_1 = 0.0038$ sec⁻¹; $V_p = 0$ (no Ca²⁺ reuptake).

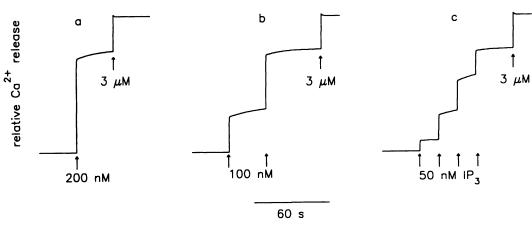


Fig. 4. Numerical simulation of Ca²⁺ efflux stimulated by sequential additions of IP₃. Different concentrations of IP₃ are added at different times (arrows). The Ca²⁺ store is virtually emptied with 3 μM IP₃. a, Single addition of 200 nM IP₃. b, Additions of 2 × 100 nM. c, Additions of 4 × 50 nM. The parameters were chosen in order to generate Ca²⁺ release curves compatible with experimental data obtained by Meyer and Stryer (Fig. 5 of Ref. 5): $K_A = K_B = 1$ μM; a = b = 2; $k_t/k_a = 20,000$; $K_M/Ch_{tot} = 10^{-7}$; $k_+ = 0.0005$ sec⁻¹; $k_- = 0.05$ sec⁻¹; $k_cCh_{tot} = 300$ sec⁻¹; $k_1 = 0.0038$ sec⁻¹; $k_p/Ca_{tot} = 0.3$.

relationship between rate of Ca²⁺ release and IP₃ concentration (5). The high degree of complexity implicitly contained in such a system renders this explanation rather unlikely.

Another proposed hypothetical model (6) assumed that the biphasic kinetics of Ca²⁺ release would be the consequence of control of the efflux by the intravesicular Ca²⁺ concentration. During the IP₃-induced Ca²⁺ release, the affinity of the IP₃ binding site would become lower because the intravesicular Ca²⁺ concentration decreases. In fact, numerical simulations have shown that this model can account for the biphasic kinetics (7). However, it also predicts that, for a given IP₃ concentration, the initial slope of the decay curve in the semilogarithmic representation should depend on the Ca²⁺ content of the store. This prediction is in contraction to the experimental observation (4) mimicked in Fig. 2 and discussed above.

The model presented in our study was initially proposed to account quantitatively for the experimental data obtained by Taylor and Potter (4) and by Meyer and Stryer (5). Because the previously reported interpretations seem to be unlikely or inadequate, this model would be a first acceptable theoretical explanation of the concepts of "quantal Ca2+ release" (3) and "increment detection" (5). The main feature of the model is the existence of dynamic control of the channel activity by a memory molecule. It was assumed that this molecule is activated by the open channel A_I and catalyzes the conversion of A_I to the closed form B_I. However, another possible model could involve a catalyst that converts B_I to A_I and that would be inactivated by A_I. Similar results could be obtained with both models. In both cases, the quantal Ca2+ release requires that the activity of the Ca2+ channel is controlled by catalytic processes. Interestingly, biphasic kinetics of IP₃-induced Ca²⁺ release in RBL cells can be observed at 37° but not at 11° (5). On the other hand, the IP₃-sensitive Ca²⁺ channel can be phosphorylated at different sites by specific protein kinases (8), suggesting a possible control of the channel activity by covalent modifications of the IP₃ receptor. However, it must be emphasized that the biphasic kinetics can be observed in the absence of ATP (4, 5). In this context, one can also mention the fact that GTP, but neither GTP γ S nor GDP β S, abolishes the apparent desensitization of IP3-induced Ca2+ release in pancreatic acinar cells (9).

The model attributes to the open form of the channel (A_I) a crucial role in the regulation of the activity of the memory molecule M. Because A_I induces the accumulation of M*, the activation of this molecule can be correlated with the Ca²⁺ flux and, thus, with the local cytosolic Ca²⁺ concentration in the vicinity of the channel. Therefore, an alternative description of the system could be that the rate of M activation is controlled by the local Ca²⁺ concentration. Such regulation is supported by experimental evidence (10) showing that Ca²⁺ may inhibit IP₃-induced Ca²⁺ release in AR42J cells and that this inhibition is more pronounced when the cells are exposed to a high Ca²⁺ concentration before stimulation by IP₃. It appears that some component of the system is able to remember that Ca²⁺ was recently mobilized.

In the proposed model, the memorization process consists of the catalytic activation of the memory molecule M responsible for the dynamic regulation of the accumulation of the closed form B_I. All the simulation results assumed that the IP₃ binding affinity is the same for both channel forms, i.e., $K_A = K_B$. However, experimental observations suggested that, in rat hepatocytes, the IP3 binding component associated with the phase of fast Ca2+ efflux has a lower apparent affinity for IP3 than the one associated with slow efflux (11) and that the IP3 stimulation of Ca2+ release induces a reversible transformation of the receptor from a low affinity state, related to Ca2+ release, to a desensitized high affinity state (12). The concept of IP₃ receptor interconversion is confirmed by the Ca²⁺-induced increase of IP₃ binding observed in liver membrane preparations (12). However, cerebellar membranes studied under the same experimental conditions showed a Ca2+-induced decrease of IP3 binding (12), suggesting that the change of binding affinity is perhaps not crucial for regulating Ca2+ efflux.

It has been proposed (5, 8, 12) that the IP₃ receptor interconversion and the biphasic IP₃-induced Ca²⁺ release could explain the sustained Ca²⁺ oscillations observed in many cell types (1). The concept of quantal Ca²⁺ release involves, in fact, a negative feedback loop that causes a transient mobilization of Ca²⁺ from IP₃-sensitive stores. However, theoretical simulation can show that the existence of a negative feedback loop is not sufficient to account for Ca²⁺ oscillations. An intracellular Ca²⁺ oscillator must also contain a positive feedback loop, such as, for instance,

the activation of Ca^{2+} release by intracellular Ca^{2+} . The concept of Ca^{2+} -induced Ca^{2+} release has been documented, especially in the case of IP_3 -insensitive Ca^{2+} stores that contain ryanodine receptors (1). More recent observations showed that cytosolic Ca^{2+} may act as a coagonist of IP_3 -induced Ca^{2+} release (13). The existence of such a positive feedback of Ca^{2+} on its own release has been shown to allow cytosolic Ca^{2+} oscillations (14).

In conclusion, this theoretical work proposes a plausible explanation for the quantal Ca^{2+} release from IP₃-sensitive Ca^{2+} stores and for other related kinetic properties. It predicts the existence of a memory molecule that controls the rate of channel interconversion and that is catalytically transformed when the channel is open. The complexity of the model due to the existence of cross-coupled catalytic interactions between this molecule and the receptor is reminiscent of β -adrenergic receptor desensitization induced by the phosphorylation of the receptor by β -adrenergic receptor kinase or by cyclic AMP-dependent protein kinase (15).

Acknowledgments

The author would like to thank Dr. J. E. Dumont for his support in this work.

References

- Tsien, R. W., and R. Y. Tsien. Calcium channels, stores and oscillations. Annu. Rev. Cell Biol. 6:715-760 (1990).
- Maeda, N., T. Kawasaki, S. Nakade, N. Yokota, T. Taguchi, M. Kasai, and K. Mikoshiba. Structural and functional characterization of inositol 1,4,5trisphosphate receptor channel from mouse cerebellum. J. Biol. Chem. 266:1109-1116 (1991).
- Muallem, S., S. J. Pandol, and T. G. Beeker. Hormone-evoked calcium release from intracellular stores is a quantal process. J. Biol. Chem. 264:205-212 (1989).
- 4. Taylor, C. W., and B. V. L. Potter. The size of inositol 1,4,5-trisphosphate-

- sensitive Ca²⁺ stores depends on inositol 1,4,5-trisphosphate concentration. Biochem. J. **266**:189-194 (1990).
- Meyer, T., and L. Stryer. Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc. Natl. Acad. Sci. USA 87:3841-3845 (1990).
- Irvine, R. F. 'Quantal' Ca²⁺ release and the control of Ca²⁺ entry by inositol phosphates: a possible mechanism. FEBS Lett. 263:5-9 (1990).
- Tregear, R. T., A. P. Dawson, and R. F. Irvine. Quantal release of Ca²⁺ from intracellular stores by InsP₃: tests of the concept of control of Ca²⁺ release by intraluminal Ca²⁺. Proc. R. Soc. Lond. B Biol. Sci. 243:263-268 (1991).
- Ferris, C. D., R. L. Huganir, D. S. Bredt, A. M. Cameron, and S. H. Snyder. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc. Natl. Acad. Sci. USA 88:2232-2235 (1991).
- Engling, R., K. J. Föhr, T. P. Kemmer, and M. Gratzl. Effect of GTP and Ca²⁺ on inositol 1,4,5-trisphosphate induced Ca²⁺ release from permeabilized rat exocrine pancreatic acinar cells. Cell Calcium 12:1-9 (1991).
- Zhao, H., and S. Muallem. Inhibition of inositol 1,4,5-trisphosphate-mediated Ca²⁺ release by Ca²⁺ in cells from peripheral tissues. J. Biol. Chem. 265:21419-21422 (1990).
- Champeil, P., L. Combettes, B. Berthon, E. Doucet, S. Orlowski, and M. Claret. Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepatocytes. J. Biol. Chem. 264:17665-17673 (1989).
- Pietri, F., M. Hilly, and J. P. Mauger. Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 265:17478-17485 (1990).
- Finch, E. A., T. J. Turner, and S. M. Goldin. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science (Washington D.C.) 252:443-446 (1991).
- Somogyi, R., and J. W. Stucki. Hormone-induced calcium oscillations in liver can be explained by a simple one-pool model. J. Biol. Chem. 266:11068– 11077 (1991).
- Benovic, J. L., M. Bouvier, M. G. Caron, and R. J. Lefkowitz. Regulation of adenylyl cyclase-coupled β-adrenergic receptors. Annu. Rev. Cell Biol. 4:405– 428 (1988).

Send reprint requests to: Stéphane Swillens, Institut de Recherche Interdisciplinaire, Université Libre de Bruxelles, Campus Erasme, route de Lennik 808, B-1070 Brussels, Belgium.

